Diverse genetic architectures lead to the same cryptic phenotype in a yeast cross
نویسندگان
چکیده
Cryptic genetic variants that do not typically influence traits can interact epistatically with each other and mutations to cause unexpected phenotypes. To improve understanding of the genetic architectures and molecular mechanisms that underlie these interactions, we comprehensively dissected the genetic bases of 17 independent instances of the same cryptic colony phenotype in a yeast cross. In eight cases, the phenotype resulted from a genetic interaction between a de novo mutation and one or more cryptic variants. The number and identities of detected cryptic variants depended on the mutated gene. In the nine remaining cases, the phenotype arose without a de novo mutation due to two different classes of higher-order genetic interactions that only involve cryptic variants. Our results may be relevant to other species and disease, as most of the mutations and cryptic variants identified in our study reside in components of a partially conserved and oncogenic signalling pathway.
منابع مشابه
Transcriptional Derepression Uncovers Cryptic Higher-Order Genetic Interactions
Disruption of certain genes can reveal cryptic genetic variants that do not typically show phenotypic effects. Because this phenomenon, which is referred to as 'phenotypic capacitance', is a potential source of trait variation and disease risk, it is important to understand how it arises at the genetic and molecular levels. Here, we use a cryptic colony morphology trait that segregates in a yea...
متن کاملHuman-Yeast Hybrids: New Visions to Genetic Disorders and Drug Discovery
Yeast has been a very helpful organism for centuries, especially with respect to fermentation of sugars and production of bread. However, for an even longer time, yeast has been a distant relative of humans having diverged from a common ancestor, about one billion years ago. More than one third of the yeast genes have human counterparts, despite this evolutionary distance. Yeast and human ortho...
متن کاملCryptic genetic variation is enriched for potential adaptations.
Cryptic genetic variation accumulates under weakened selection and has been proposed as a source of evolutionary innovations. Weakened selection may, however, also lead to the accumulation of strongly deleterious or lethal alleles, swamping the effect of any potentially adaptive alleles when they are revealed. Here I model variation that is partially shielded from selection, assuming that uncon...
متن کاملGenetic Interactions Involving Five or More Genes Contribute to a Complex Trait in Yeast
Recent research suggests that genetic interactions involving more than two loci may influence a number of complex traits. How these 'higher-order' interactions arise at the genetic and molecular levels remains an open question. To provide insights into this problem, we dissected a colony morphology phenotype that segregates in a yeast cross and results from synthetic higher-order interactions. ...
متن کاملThe evolution of genetic architectures underlying quantitative traits.
In the classic view introduced by R. A. Fisher, a quantitative trait is encoded by many loci with small, additive effects. Recent advances in quantitative trait loci mapping have begun to elucidate the genetic architectures underlying vast numbers of phenotypes across diverse taxa, producing observations that sometimes contrast with Fisher's blueprint. Despite these considerable empirical effor...
متن کامل